- Liu, X., Smith, L. A., Hu, J., & Ma, P. X. (2009). Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering. *Biomaterials*, 30, 2252.
- Lu, L., & Mikos, A. G. (1996). The importance of new processing in tissue engineering. *MRS Bulletin*, 31, 28.
- Matthews, J. A., Wnek, G. E., Simpson, D. G., & Bowlin, G. L. (2002). Electrospinning of collagen nanofibers. *Biomacromolecules*, 3, 232.
- Megelski, S., Stephens, J. S., Chase, D. B., & Rabolt, J. F. (2002). Arrays of micro- and nanopores on electrospun polymer fibers. *Macromolecules*, 35, 8456.
- Nie, H., & Wang, C. H. (2007). Fabrication and characterization of PLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNA. *Journal of Control Release*, 120, 111.
- Ouyang, H. W., Goh, J. C., Thambyah, A., Teoh, S. H., & Lee, E. H. (2003). Knitted poly-lactide-co-glycolide scaffold loaded with bone marrow stromal cells in repair and regeneration of rabbit Achilles tendon. *Tissue Engineering*, 9, 431.
- Prabhakaran, M. P., Venugopal, J. R., & Ramakrishna, S. (2009). Mesenchymal stem cell differentiation to neuronal cells on electrospun nanofibrous substrates for nerve tissue engineering. *Biomaterials*, 30, 4996.
- Riboldi, S. A., Sampaolesi, M., Neuenschwander, P., Cossu, G., & Mantero, S. (2005). Electrospun degradable polyesterurethane

- membranes: Potential scaffolds for skeletal muscle tissue engineering. *Biomaterials*, **26**, 4606.
- Rockwood, D. N., Akins, R. E., Jr., Parrag, I. C., Woodhouse, K. A., & Rabolt, J. F. (2008). Culture on electrospun polyurethane scaffolds decreases atrial natriuretic peptide expression by cardiomyocytes in vitro. Biomaterials, 29, 4783.
- Shields, K. J., Beckman, M. J., Bowlin, G. L., & Wayne, J. S. (2004). Mechanical properties and cellular proliferation of electrospun collagen type II. *Tissue Engineering*, 10, 1510.
- Stephens, J., Rabolt, J. F., Fahnestock, S., & Chase, D. (2003). From the spider to the web: Biomimetic processing of protein polymers and collagen. *MRS Proceedings*, 774, 31.
- Xie, J., & Wang, C. H. (2006). Electrospun micro- and nanofibers for sustained delivery of paclitaxel to treat C6 glioma in vitro. Pharmaceutical Research, 23, 1817.
- Xu, C. Y., Inai, R., Kotaki, M., & Ramakrishna, S. (2004). Aligned biodegradable nanofibrous structure: A potential scaffold for blood vessel engineering. *Biomaterials*, 25, 877.
- Yang, F., Murugan, R., Wang, S., & Ramakrishna, S. (2005). Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. *Biomaterials*, 26, 2603.
- Zong, X., Bien, H., Chung, C.-Y., Yin, L., Fang, D., et al. (2005). Electrospun fine-textured scaffolds for heart tissue constructs. *Biomaterials*, **26**, 5330.

CHAPTER I.2.17 SURFACE-IMMOBILIZED BIOMOLECULES

Allan S. Hoffman¹ and Jeffrey A. Hubbell²

¹Professor of Bioengineering and Chemical Engineering, UWEB Investigator, University of Washington, Seattle, WA, USA

²EPFL (École Polytechnique Fédérale de Lausanne), Switzerland

INTRODUCTION

Biomolecules such as enzymes, antibodies, affinity proteins, cell receptor ligands, and drugs of all kinds have been immobilized on and within biomaterial surfaces for a wide range of therapeutic, diagnostic, tissue regeneration, separation, and bioprocess applications. Immobilization of heparin on polymer surfaces is one of the earliest examples of a surface-modified, biologically functional biomaterial (Gott et al., 1963). Living cells may also be combined with biomaterials, especially when their surfaces contain cell adhesion peptides or proteins, and the fields of cell culture, artificial organs, and tissue engineering include important examples of cell-surface interactions. These "hybrid" combinations of natural and synthetic materials confer "biological functionality" to the synthetic biomaterial. Many sections and chapters in this textbook cover various aspects of this topic, including adsorption of proteins and adhesion of cells and bacteria on biomaterial surfaces, non-fouling surfaces, cell culture, tissue engineering, artificial organs, drug delivery, and others; this chapter will focus on the methodology involving physical adsorption and chemical immobilization of biomolecules on biomaterial surfaces, especially for applications requiring bioactivity of the immobilized biomolecule.

Among the different classes of biomaterials that could be biologically modified, synthetic polymers are especially interesting because their surfaces may contain reactive groups such as –OH, –COOH or NH₂ groups, or they may be readily modified with other reactive groups such as azide, alkyne, and SH groups. All of these groups can be used to covalently link biomolecules.

Another advantage of polymers as supports for biomolecules is that the polymers may be fabricated in many forms, including films, membranes, tubes, fibers, fabrics, particles, capsules, and porous structures. Furthermore, macromolecular structures can also vary substantially. The latter can include homopolymers, random, alternating, block, and graft copolymers, hyperbranched (comblike) and star-shaped structures (see Chapter I.2.2 on Polymers).

Living anionic polymerization techniques, along with newer methods of living free-radical polymerizations, now provide fine control of molecular weights with narrow distributions. The molecular forms of solid polymers include non-cross-linked chains that are insoluble at physiologic conditions, cross-linked networks, physical blends, and interpenetrating networks (IPNs) (e.g., Piskin and Hoffman, 1986; see also Chapter I.2.2). "Smart" polymers are sharply responsive in solubility behavior to stimuli, such as temperature, pH, and salt concentration (see Chapter I.2.11 on "Smart" Polymers).

For surfaces of metals, metal oxides, inorganic glasses or ceramics, biological functionality can sometimes be added via a chemically immobilized or physically adsorbed polymeric or surfactant adlayer, or by use of techniques such as plasma gas discharge, corona discharge in air or ozone to modify polymer surface compositions

with functional groups (see also Chapter I.2.12). Several researchers have applied mussel adhesive chemistry based on self-condensation of dopamine to form tight bonding layers of polydopamine on a variety of surfaces, including metals, metal oxides, and glasses (Lee et al., 2007; Ku et al., 2010). The amine groups in these polymers may be further functionalized with biomolecules.

PATTERNED SURFACE COMPOSITIONS

(See also Chapter I.2.13.)

Biomaterial surfaces may also be functionalized in geometric patterns (Bernard et al., 1998; Blawas and Reichert, 1998; James et al., 1998; Ito, 1999; Kane et al., 1999; Folch and Toner, 2000). Sometimes the patterned surfaces will have regions that are non-binding to proteins (so-called "non-fouling" compositions) while others may contain covalently-linked cell receptor ligands (Neff et al., 1999; Alsberg et al., 2002; Csucs et al., 2003; VandeVondele et al., 2003), or may have physically adsorbed cell adhesion proteins (McDevitt et al., 2002; Ostuni et al., 2003). A huge industry has also evolved based on "biochips" that contain microarrays of immobilized, single-stranded DNA (for genomic assays) or peptides or proteins (for proteomic assays) (Houseman and Mrksich, 2002; Lee and Mrksich, 2002). The majority of these microarrays utilize inorganic silica chips rather than polymer substrates directly, but it is possible to incorporate functionality through chemical modification with silane chemistries (Puleo, 1997) or adsorption of a polymeric adlayer (Scotchford et al., 2003; Winkelmann et al., 2003).

A variety of methods have been used for the production of these patterned biochips, including photo-initiated synthesis through patterned masks (Ellman and Gallop, 1998; Folch and Toner, 2000), microfluidic fluid exposure (Ismagilov et al., 2001), and protection with adhesive organic protecting layers that are lifted off after exposure to the biomolecular treatment (Jackman et al., 1999).

IMMOBILIZED BIOMOLECULES AND THEIR USES

Many different biologically functional molecules can be chemically or physically immobilized on polymeric supports (Table I.2.17.1) (Laskin, 1985; Tomlinson and Davis, 1986). Examples of applications of these immobilized biological species are listed in Table I.2.17.2. When hydrophilic, molecularly cross-linked or entangled solids are water-swollen above about 15–25% water content, they become hydrogels and biomolecules may be immobilized on the outer gel surface, as well as within the water-containing regions ("meshes") of the swollen polymer gel network. It can be seen that there are many diverse uses of such biofunctional systems in both the medical and biotechnology fields. For example, a number of immobilized enzyme supports and reactor systems

TABLE 1.2.17.1

Examples of Biologically
Active Molecules that may
be Immobilized on or within
Polymeric Biomaterials

Proteins/Peptides

Enzymes

Antibodies

Antigens

Cell adhesion molecules

"Blocking" proteins

Saccharides

Sugars

Oligosaccharides

Polysaccharides

Lipids

Fatty acids

Phospholipids

Glycolipids

Other

Conjugates or mixtures of the above

Drugs

Antithrombogenic agents

Anticancer agents

Antibiotics

Contraceptives

Drug antagonists

Peptide, protein drugs

Ligands

Hormone receptors

Cell surface receptor ligands (peptides, saccharides)

Avidin, biotin

Nucleic Acids, Nucleotides

Single or double-stranded

DNA, RNA (e.g., antisense oliogonucleotides)

(Table I.2.17.3) have been developed for therapeutic uses in the clinic (Table I.2.17.4) (De Myttenaere et al., 1967; Kolff, 1979; Sparks et al., 1969; Chang, 1972; Nose et al., 1983; Schmer et al., 1981; Callegaro and Denri, 1983; Nose et al., 1984; Lavin et al., 1985; Sung et al., 1986). Advantages and disadvantages of immobilized enzymes are listed in Table I.2.17.5.

IMMOBILIZED CELL LIGANDS AND CELLS

Cell interactions with foreign materials are usually mediated by a biological intermediate, such as adsorbed proteins, as described in Chapter II.1.2. An approach using biologically-functionalized materials can be much more direct, by adsorbing or covalently grafting ligands for cell–surface adhesion receptors, such as integrins, to the material surface (Lutolf and Hubbell, 2005; Patterson et al., 2010) (Table I.2.17.6).

This has been accomplished with peptides grafted randomly over a material surface (Massia and Hubbell,

TABLE 1.2.17.2	Application of Immobilized Biomolecules and Cells			
Enzymes	Bioreactors (industrial, biomedical) Bioseparations Biosensors Diagnostic assays Biocompatible surfaces			
Antibodies, peptides, and other affinity molect				
Drugs	Thrombo-resistant surfaces Drug delivery systems			
Lipids	Thrombo-resistant surfaces Albuminated surfaces			
Nucleic acid derivatives nucleotides	and DNA probes Gene therapy			
Cells	Bioreactors (industrial) Bioartificial organs Biosensors			

TABLE 1.2.17.3	Bioreactors, Supports and Designs			
"Artificial cell" suspensions				
(microcapsules, RBC ghosts, liposomes, reverse micelles [w/o] microspheres)				
Biologic Supports				
(membranes and tubes of collagen, fibrin ± glycosaminoglycans)				
Synthetic Supports				
(porous or asymmetric hollow fibres, particulates, parallel plate devices)				

TABLE 1.2.17.4	ABLE 1.2.17.4 Examples of Immobilized Enzymes in Therapeutic Bioreactors			
Medical Application	n Substrate	Substrate Action		
Cancer Treatment				
I-Asparaginase	Asparagine	Cancer cell nutrient		
I-Glutaminase	Glutamine	Cancer cell nutrient		
I-Arginase	Arginine	Cancer cell nutrient		
I-Phenylalanine	Phenylalanine	Toxin lyase		
Indole-3-alkane α hydroxylase	Tryptophan	Cancer cell nutrient		
Cytosine deaminase	5-Fluorocytosine	Toxin		
Liver Failure (Detox	ification)			
Bilirubin oxidase	Bilirubin	Toxin		
UDP-Gluceronyl transfer	ase Phenolics	Toxin		
Other				
Heparinase	Heparin	Anticoagulant		
Urease	Urea	Toxin		

TABLE 1.2.17.5	Some Advantages and Disadvantages of Immobilized Enzymes			
Advantages				
Enhanced stability				
Can modify enzyme microenvironment				
Can separate and reuse enzyme				
Enzyme-free product				
Lower cost, higher purity product				
No immunogenic response (therapeutics)				
Disadvantages				
Difficult to sterilize				
Fouling by other biomolecules				
Mass transfer resistances (substrate in and product out)				
Adverse biological responses of enzyme support surfaces (in vivo or ex vivo)				
Greater potential for product inhibition				

TABLE 1.2.17.6	Selected* Peptide Adhesion Domains in Cell Adhesion Proteins		
Fibronectin	RGDS LDV REDV		
Vitronectin	RGDS		
Laminin A chain	LRGDN IKVAV		
Laminin B1 chain	YIGSR		
Laminin B2 chain	RNIAEIIKDA		
Collagen I	RGDT DGEA		
Thrombospondin	RGD		

^{*}A large number of receptor-binding peptide domains have been identified in numerous adhesion proteins that are able to recapitulate some of the binding character of the entire protein. Only a small selection of widely studied peptides is listed here.

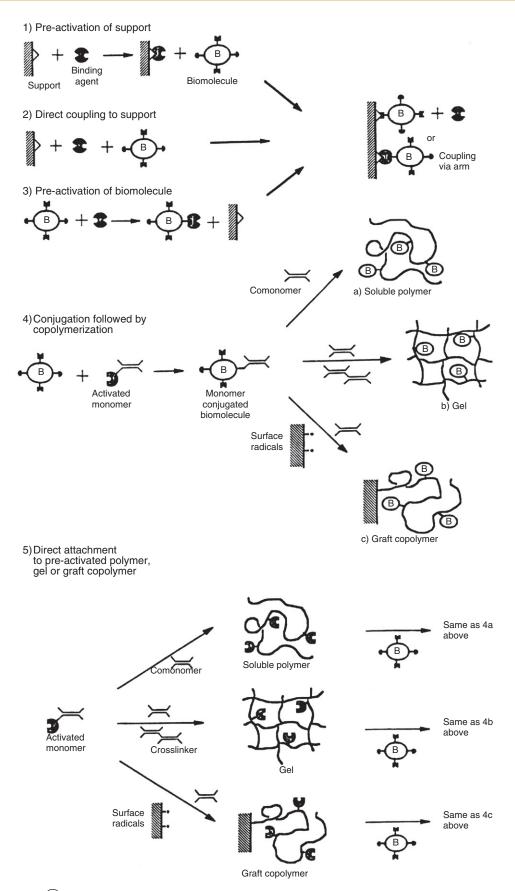
1991), as well as with peptides presented in a preclustered manner (Irvine et al., 2001). The latter has important advantages. Cells normally cluster their adhesion receptors into nanoscopic assemblies referred to as "focal contacts" (Geiger et al., 2009), in which both adhesion ligands and receptors are co-clustered. This clustering plays an important role in both cell adhesion mechanics (Ward and Hammer, 1993), and cell signaling (Maheshwari et al., 2000; Geiger et al., 2009). In addition to peptides, saccharides have also been grafted to polymer surfaces to confer biological functionality (Griffith and Lopina, 1998; Chang and Hammer, 2000).

Nanotechnology methods of ligand immobilization have been used extensively to achieve very precise control of ligand immobilization density, ligand clustering, and arrangement, and even ligand exposure from a previously hidden state or hiding after an exposed state. For example, nano-patterning methods have been used to show that cells are capable of sensing and responding to

clustering on the length scale of 70 nm of the RGD peptide, which binds to integrins such as $\alpha_v \beta_3$ (Huang et al., 2009). At longer length scales, the cell is unable to sense clustering. Methods of formation of self-assembling monolayers, including stimulus-sensitive self-assembling monolayers, have been used to conduct investigations on the migration- and differentiation-inducing influences of different cell adhesion molecules, and also to identify new receptor–ligand biomolecular pairs (Mrksich, 2009).

Specific biomolecules can be immobilized in order to control cellular interactions; one important class of such functionalizations is the polypeptide growth factor. Such molecules can be immobilized and retain their ability to provide biological cues that signal specific cellular behavior, such as support of liver-specific function of hepatocytes (Kuhl and Griffith-Cima, 1996), induction of neurite extension in neurons (Sakiyama-Elbert et al., 2001), induction of angiogenesis (Zisch et al., 2001) or the differentiation of mesenchymal stem cells into boneforming osteoblasts (Lutolf et al., 2003a,b; Martino et al., 2009). It is important to understand that these effects are not merely induced by the mechanics of adhesion, i.e., what matters are the details of which adhesion ligand is displayed, and thus which adhesion receptor is ligated and what downstream signaling is activated. For example, stimulation of mesenchymal stem cells with a ligand for integrin $\alpha_5\beta_1$ stimulated osteogenesis, whereas stimulation with a ligand for integrin $\alpha_v \beta_3$ did not. Other molecules may be immobilized that can take part in enzymatic reactions at the surface. McClung et al. (2001, 2003) have immobilized lysines, whose ε -amino groups may interact with pre-adsorbed tissue plasminogen activator (tPA) during coagulation, to enhance fibrin clot dissolution at that surface.

The above paragraphs deal with biomaterial surfaces as though they are two-dimensional. In some devices, this is indeed the case; however, biomaterials have been developed to display their surfaces in three-dimensional situations, even with triggering by cellular remodeling. For example, biomaterial gels have been developed, consisting of cross-linked PEG chains, where the cross-linker is sensitive to proteases, such as plasmin or matrix metalloproteinases, that are activated by cells as they migrate (Lutolf et al., 2003a,b). In this way, as cells migrate in a material and remodel it, they can expose new surfaces and be stimulated by those new surfaces. Using such materials as tools, a number of regenerative medical applications have been targeted, where the biomaterial surface displays both adhesion ligands and polypeptide growth factors (Lutolf and Hubbell, 2005). Such materials, through careful selection of adhesion ligand composition, can control very specific biological processes, such as embryonic stem cell self-renewal (Lee et al., 2010). Materials have been developed that allow for very precise control of the adhesion ligand display and crosslinked nature of the three-dimensional material, e.g., through locally-controlled photochemical manipulation (Kloxin et al., 2009, 2010).


IMMOBILIZATION METHODS

There are three major methods for immobilizing biomolecules: physical adsorption; physical "entrapment;" and covalent attachment (Stark, 1971; Zaborsky, 1973; Dunlap, 1974). Physical adsorption includes: (1) van der Waals interactions; (2) electrostatic interactions; and (3) affinity recognition. Once adsorbed, the molecules may be further cross-linked to each other. Physical "entrapment" systems include: (1) microcapsules; (2) hydrogels; and (3) physical mixtures such as matrix drug delivery systems. Covalent attachment includes: (1) soluble polymer conjugates; (2) conjugates on solid surfaces; or (3) conjugates within hydrogels.

It is clear that the first two are physically based, while the third is based on covalent or "chemical" attachment to the support molecules. However, sometimes the physical attachment process may involve pairs of molecules with very strong affinity interactions, verging on covalent force levels, such as biotin with streptavidin. Thus, it is important to note that the term "immobilization" can refer to a short-term, long-term or "permanent" localization of the biomolecule on or within a support. In the case of a drug delivery system, the immobilized drug is supposed to be released from the support, either over a short period or over a longer-term, while an immobilized enzyme or cell adhesion peptide or protein in an artificial organ is designed to remain attached to or entrapped within the support over the duration of use. Either physical or chemical immobilization can lead to relatively long-term or "permanent" retention on or within a solid support, especially if the immobilized biomolecule is large.

If the polymer support is biodegradable, then the chemically immobilized biomolecule will be released as the matrix erodes or degrades away. Many researchers have chemically immobilized cell adhesion peptides such as RGD onto biodegradable matrices such as PLGA for use as tissue engineering scaffolds. The cells will have the time to bind and regenerate tissue if the support is slowly degrading. If the support degrades more rapidly than the cells' ability to reach and bind to the adhesion peptides, then the matrix will not function in the intended way. The immobilized biomolecule may also be susceptible to enzymatic degradation *in vivo*, and this remains an interesting aspect that has received relatively little attention.

A large and diverse group of methods have been developed for covalent binding of biomolecules to soluble or solid polymeric supports (Weetall, 1975; Carr and Bowers, 1980; Dean et al., 1985; Gombotz and Hoffman, 1986; Shoemaker et al., 1987; Park and Hoffman, 1990; Yang et al., 1990; Schense and Hubbell, 1999; Lutolf et al., 2003b). Many of these methods are schematically illustrated in Figure I.2.17.1. The same biomolecule may be immobilized by many different methods; specific

Note:

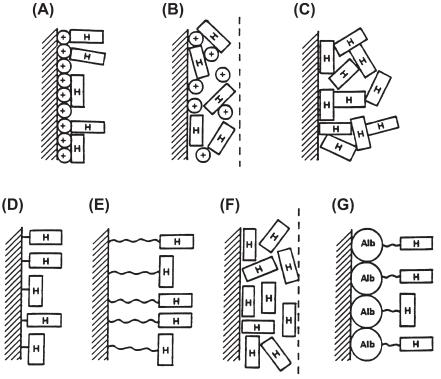
B may be immobilized with or without a "tether" arm in any of the above

FIGURE 1.2.17.1 Schematic cartoons showing various methods for covalent biomolecule immobilization.

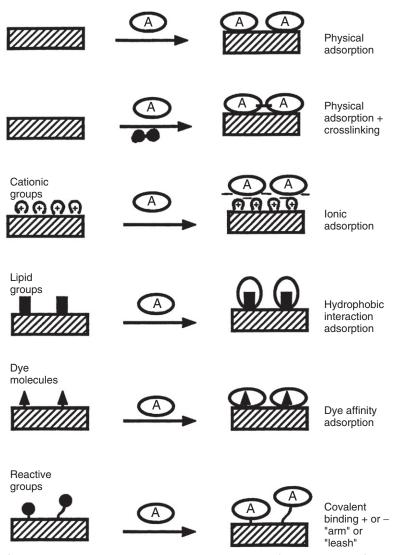
Support function	Coupling agent	Active intermediate	Activation conditions	Coupling conditions	Major reacting groups on proteins
OH	CNBr	OC=NH	pH 11–12.5 2M carbonate	pH 9–10. 24 hr at 4°C	—NH ₂
or NH ₂	R=CI, NH ₂ , OCH ₂ COOH, or NHCH ₂ COOH	O N N CI	Benzene 2 hr at 50°C	pH 8. 12 hr at 4°C 0.1 <i>M</i> phosphate	—NH ₂
-W-NH ₂	S CI—C—CI	₩ N=C=S	10% thiophosgene CHCl ₃ , reflux reaction	pH 9–10. 0.05 <i>M</i> HCO ₃ 2 hr at 25°C	
w-NH ₂	cI—c—cI	₩ N=C=O	Same as isothiocyanate	Same as isothiocyanate	
w-NH ₂	O O II II HC(CH ₂) ₃ CH	$N = {\rm C} - ({\rm CH_2})_3 - {\rm CH}$	2.5% Glutaraldehyde in pH 7.0, 0.1 <i>M</i> PO ₄	pH 5–7, 0.05 <i>M</i> phosphate 3 hr at R.T.	$-NH_2$ OH
w-NH ₂	H ₂ C - C O	$\begin{array}{c} \text{O} \\ \text{II} \\ \text{C}(\text{CH}_2)_2 - \text{C} \\ \text{OH} \end{array}$	1% Succinic anhydride, pH 6	See carboxyl derivatives	
NH ₂	HNO ₂		2N HCI: 0.2g NaNO ₂ at 4°C for 30 min (reaction conditions for aryl amine function)	pH 8, 0.05 <i>M</i> bicarbonate. 1–2 hr at 0°C	—NH ₂ —SH ———— OH
0 C-NH	₂ H ₂ N — NH ₂ HNO ₂	C-N ₃		pH 8, 0.05 <i>M</i> bicarbonate. 1–2 hr at 0°C	NH ₂ SH OH
or SH	R−Z=C=Z−R + + H	R-Z-C=H-R-R	50mg 1-cyclohexyl-3- (2-morpholinoethyl)- carbodiimide metho-p- toluene sulfate/10ml, pH 4–5 2–3 hr at R.T.	pH 4, 2–3 hr at R.T.	-с он
or June Con	SOCI ₂	(Intermediate formed from carboxyl group are either protein or matrix)	10% Thionyl chloride/CHCl ₃ , reflux for 4 hr	pH 8–9, 1 hr at R.T.	$-\!$
ф. с. он	HO –N		0.2% <i>N</i> -hydroxysuccinimide, 0.4% <i>N,N</i> -dicyclohexyl- carbodiimide/dioxane	pH 5–9, 0.1 <i>M</i> phosphate, 2–4 hr at 0°C	$-\!$

FIGURE I.2.17.2 Examples of various chemical methods used to bond biomolecules directly to reactive supports. (Carr and Bowers, 1980.)

examples of the most common chemical reactions utilized are shown in Figure I.2.17.2. This figure does not include some important reactions, such as thiol-maleimide, thiol-vinyl sulfone, amino-vinyl (Michael additions), and azide-alkyne (click) conjugation reactions. The reader is referred to Hermansson (2008) for many useful details on numerous conjugation chemistries.


For covalent binding to an inert solid polymer surface such as polyethylene or silicone rubber, the surface must first be chemically modified to provide reactive groups for the subsequent immobilization step. If the "inert" polymer support does not contain such groups, then it is necessary to modify it in order to permit covalent immobilization of biomolecules to the surface. A wide number of solid surface modification techniques have been used, including ionizing radiation-initiated graft copolymerization, plasma gas discharge, photochemical grafting, chemical modification (e.g., ozone grafting), and chemical derivatization (Hoffman et al., 1972, 1986; Gombotz and Hoffman, 1986, 1987; Hoffman, 1987, 1988) (see also Chapter I.2.12 on surface modification techniques).

A covalently-immobilized biomolecule may also be attached via a spacer group, sometimes called an "arm" or a "tether" (Cuatrecasas and Anfinsen, 1971; Hoffman et al., 1972; Hoffman, 1987). One of the most popular tethers is a PEG molecule that has been derivatized with different reactive end groups (e.g., Kim and Feijen, 1985),


and several companies currently offer a variety of homoor hetero-bifunctional PEGs with end group chemistries such as N-hydroxysuccinimide (NHS), maleimide, pyridyl disulfide, thiol, vinyl sulfone, alkyne, and azide (the last two are for click chemical attachments). Such spacers can provide greater steric freedom, and thus greater specific activity for the immobilized biomolecule. The spacer arm may also be either hydrolytically or enzymatically degradable, and therefore will release the immobilized biomolecule as it degrades (Kopecek, 1977; Hern and Hubbell, 1998).

Inert surfaces, whether polymeric, metal or ceramic, can also be functionalized through modification of a polymeric adlayer. Such physically adsorbed or chemisorbed polymers can be bound to the surface via electrostatic interactions (VandeVondele et al., 2003), hydrophobic interactions (Neff et al., 1999) or specific chemical interactions, such as that between gold and sulfur atoms (Harder et al., 1998; Bearinger et al., 2003). Metal or ceramic surfaces may also be derivatized with functional groups using silane chemistry, such as with functionalized triethoxysilanes (Massia and Hubbell, 1991; Puleo, 1997) or dopamine polymer chemistry, as described above. Plasma gas discharge has been used to deposit polymeric amino groups for conjugation of hyaluronic acid to a metal surface (Verheye et al., 2000).

As noted earlier, hydrophobic interactions have been used to functionalize hydrophobic surfaces, utilizing

FIGURE I.2.17.3 Various methods for heparinization of surfaces: (A) heparin bound ionically on a positively charged surface; (B) heparin ionically complexed to a cationic polymer, physically coated on a surface; (C) heparin physically coated and self-cross-linked on a surface; (D) heparin covalently linked to a surface; (E) heparin covalently immobilized via spacer arms; (F) heparin dispersed into a hydrophobic polymer; (G) heparin—albumin conjugate immobilized on a surface. (Kim and Feijen, 1985.)

FIGURE I.2.17.4 Schematic of various ways that albumin may be immobilized on a surface. Albumin is often used as a "passivating" protein, to minimize adsorption of other proteins to a surface.

biomolecules such as ligands attached to hydrophobic sequences (e.g., Ista et al., 1999; Nath and Chilkoti, 2003). Surfaces with hydrophobic gradients have also been prepared for this purpose (Detrait et al., 1999). An interesting surface-active product was developed several years ago that was designed to convert a hydrophobic surface to a cell adhesion surface by hydrophobic adsorption; it had an RGD cell adhesion peptide coupled at one end to a hydrophobic peptide sequence.

Sometimes more than one biomolecule may be immobilized to the same support. For example, a soluble polymer designed to "target" a drug molecule may have separately conjugated to it a targeting moiety such as an antibody, along with the drug molecule, which may be attached to the polymer backbone via a biodegradable spacer group (Ringsdorf, 1975; Kopecek, 1977; Goldberg, 1983). For some nucleic acid drugs, sometimes a "nuclear localization signal" or NLS is added to enhance intracellular delivery to the nucleus (e.g., Nair et al., 2003). In another example, the wells in an immunodiagnostic microtiter plate will usually be coated first with an

antibody, and then with albumin or casein (to block nonspecific adsorption during the assay); each is physically adsorbed to the well surface. In the case of affinity chromatography supports, the affinity ligand may be covalently coupled to the solid packing, and a "blocking" protein such as albumin or casein may be similarly added to block nonspecific adsorption to the support.

It is evident that there are many different ways in which the same biomolecule can be immobilized to a polymeric support. Heparin and albumin are two common biomolecules that have been immobilized by a number of widely differing methods. These are illustrated schematically in Figures I.2.17.3 and I.2.17.4.

Some of the major features of the different immobilization techniques are compared and contrasted in Table I.2.17.7. The important molecular criteria for successful immobilization of a biomolecule are that a large fraction of the available biomolecules should be immobilized, and a large fraction of those immobilized biomolecules should retain an acceptable level of bioactivity over an economically and/or clinically appropriate time period.

TABLE 1.2.17.7	Biomolecule Immobilization Methods				
Method	Physical and Electro- static Adsorption	Cross-linking (After Physical Adsorption)	Entrapment	Covalent Binding	
Ease:	High	Moderate	Moderate to low	Low	
Loading level possible:	Low (unless high S/V)	Low (unless high S/V)	High	(Depends on S/V and site density)	
Leakage (loss):	Relatively high (sens. to ΔpH salts)	Relatively low	Low to none ^a	Low to none	
Cost:	Low	Low to moderate	Moderate	High	

^aExcept for drug delivery systems.

CONCLUSIONS

It can be seen that there is a wide and diverse range of materials and methods available for immobilization of biomolecules and cells on or within biomaterial supports. Combined with the great variety of possible biomedical and biotechnological applications, this represents a very exciting and fertile field for applied research in biomaterials.

BIBLIOGRAPHY

- Alsberg, E., Anderson, K. W., Albeiruti, A., Rowley, J. A., & Mooney, D. J. (2002). Engineering growing tissues. *Proc. Natl. Acad. Sci.*, 99, 12025.
- Bearinger, J. P., Terrettaz, S., Michel, R., Tirelli, N., Vogel, H., et al. (2003). Chemisorbed poly(propylene sulphide)-based copolymers resist biomolecular interactions. *Nat. Mater.*, 2, 259–264.
- Bernard, A., Delamarche, E., Schmid, H., Michel, B., Bosshard, H. R., et al. (1998). Printing patterns of proteins. *Langmuir*, 14, 2225–2229.
- Blawas, A. S., & Reichert, W. M. (1998). Protein patterning. *Biomaterials*, **19**, 595–609.
- Callegaro, L., & Denri, E. (1983). Applications of bioreactors in medicine. *Int. J. Artif. Organs*, 6(Suppl. 1), 107.
- Carr, P. W., & Bowers, L. D. (1980). Immobilized Enzymes in Analytical and Clinical Chemistry: Fundamentals and Applications. New York, NY: Wiley.
- Chang, K. C., & Hammer, D. A. (2000). Adhesive dynamics simulations of sialyl-Lewis(x)/E-selectin-mediated rolling in a cell-free system. *Biophys. J.*, **79**, 1891–1902.
- Chang, T. M. S. (1972). Artificial Cells. Springfield, IL: C. C. Thomas.
- Csucs, G., Michel, R., Lussi, J. W., Textor, M., & Danuser, G. (2003). Microcontact printing of novel co-polymers in combination with proteins for cell-biological applications. *Biomaterials*, **24**, 1713–1720.
- Cuatrecasas, P., & Anfinsen, C. B. (1971). Affinity chromatography. Ann. Rev. Biochem., 40, 259.
- Dean, P. D. G., Johnson, W. S., & Middle, F. A. (Eds.), (1985). Affinity Chromatography. Oxford, UK: IRL Press.
- De Myttenaere, M. H., Maher, J., & Schreiner, G. (1967). Hemoperfusion through a charcoal column for glutethimide poisoning. *Trans. ASAIO*, 13, 190.
- Detrait, E., Lhoest, J. B., Bertrand, P., & de Aguilar, V. B. (1999). Fibronectin–pluronic coadsorption on a polystyrene surface with increasing hydrophobicity: Relationship to cell adhesion. *J. Biomed. Mater. Res.*, 45, 404–413.
- Dunlap, B. R. (Ed.), (1974). *Immobilized Biochemicals and Affinity Chromatography*. New York, NY: Plenum.
- Ellman, J. A., & Gallop, M. A. (1998). Combinatorial chemistry. *Curr. Opin. Chem. Biol.*, 2, 17–319.

- Folch, A., & Toner, M. (2000). Microengineering of cellular interactions. *Annu. Rev. Biomed. Eng.*, 2, 227–256.
- Geiger, B., Spatz, J. P., & Bershadsky, A. D. (2009). Environmental sensing through focal adhesions. *Nat. Rev. Mol. Cell. Biol.*, 10, 21–33.
- Goldberg, E. (Ed.), (1983). Targeted Drugs. New York, NY: Wiley-Interscience.
- Gombotz, W. R., & Hoffman, A. S. (1986). Immobilization of biomolecules and cells on and within synthetic polymeric hydrogels. In N. A. Peppas (Ed.), *Hydrogels in Medicine and Pharmacy* (Vol. 1, pp. 95–126). Boca Raton, FL: CRC Press.
- Gombotz, W. R., & Hoffman, A. S. (1987). Gas discharge techniques for modification of biomaterials. In D. Williams (Ed.), *Critical Reviews in Biocompatibility* (Vol. 4, pp. 1–42). Boca Raton, FL: CRC Press.
- Gott, V. L., Whiffen, J. D., & Dutton, R. C. (1963). Heparin bonding on colloidal graphite surfaces. *Science*, 142, 1297– 1298.
- Griffith, L. G., & Lopina, S. (1998). Microdistribution of substratum-bound ligands affects cell function: Hepatocyte spreading on PEO-tethered galactose. *Biomaterials*, 19, 979–986.
- Harder, P., Grunze, M., Dahint, R., Whitesides, G. M., & Laibinis, P. E. (1998). Molecular conformation and defect density in oligo (ethylene glycol)-terminated self-assembled monolayers on gold and silver surfaces determine their ability to resist protein adsoption. J. Phys. Chem. B, 102, 426–436.
- Hermansson, G. (2008). *Bioconjugate Techniques* (2nd ed.). New York, NY: Academic Press.
- Hern, D. L., & Hubbell, J. A. (1998). Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. *J. Biomed. Mater. Res.*, 39, 266–276.
- Hoffman, A. S. (1987). Modification of material surfaces to affect how they interact with blood. Ann. NY Acad. Sci., 516, 96–101.
- Hoffman, A. S. (1988). Applications of plasma gas discharge treatments for modification of biomaterial surfaces. J. Appl. Polymer Sci. Symp., 42, 251.
- Hoffman, A. S., Schmer, G., Harris, C., & Kraft, W. G. (1972). Covalent binding of biomolecules to radiation-grafted hydrogels on inert polymer surfaces. *Trans. Am. Soc. Artif. Internal. Organs*, 18, 10.
- Hoffman, A. S., Gombotz, W. R., Uenoyama, S., Dong, L. C., & Schmer, G. (1986). Immobilization of enzymes and antibodies to radiation grafted polymers for therapeutic and diagnostic applications. *Radiat. Phys. Chem.*, 27, 265–273.
- Houseman, B. T., & Mrksich, M. (2002). Towards quantitative assays with peptide chips: A surface engineering approach. *Trends. Biotechnol.*, **20**, 279–281.
- Huang, J., Grater, S. V., Corbellini, F., Rinck, S., Bock, E., et al. (2009). Impact of order and disorder in RGD nanopatterns on cell adhesion. *Nano. Lett.*, 9, 1111–1116.
- Irvine, D. J., Mayes, A. M., & Griffith, L. G. (2001). Nanoscale clustering of RGD peptides at surfaces using comb polymers. 1. Synthesis and characterization of comb thin films. *Biomacromolecules*, 2, 85–94.

- Ismagilov, R. F., Ng, J. M.K., Kenis, P. J.A., & Whitesides, G. M. (2001). Microfluidic arrays of fluid-fluid diffusional contacts as detection elements and combinatorial tools. *Anal. Chem.*, 73, 5207–5213.
- Ista, L. K., Pérez-Luna, V. H., & López, G. P. (1999). Surface-grafted, environmentally sensitive polymers for biofilm release. Appl. Environ. Microbiol., 65, 1603–1609.
- Ito, Y. (1999). Surface micropatterning to regulate cell functions. *Biomaterials*, 20, 2333–2342.
- Jackman, R. J., Duffy, D. C., Cherniavskaya, O., & Whitesides, G. M. (1999). Using elastomeric membranes as dry resists and for dry lift-off. *Langmuir*, 15, 2973–2984.
- James, C. D., Davis, R. C., Kam, L., Craighead, H. G., Isaacson, M., et al. (1998). Patterned protein layers on solid substrates by thin stamp microcontact printing. *Langmuir*, 14, 741–744.
- Kane, R. S., Takayama, S., Ostuni, E., Ingber, D. E., & Whitesides, G. M. (1999). Patterning proteins and cells using soft lithography. *Biomaterials*, 20, 2363–2376.
- Kim, S. W., & Feijen, J. (1985). Methods for immobilization of heparin. In D. Williams (Ed.), *Critical Reviews in Biocompatibility* (pp. 229–260). Boca Raton, FL: CRC Press.
- Kloxin, A. M., Kasko, A. M., Silans, C. N., & Anseth, K. S. (2009). Photodegradable hydrogels for dynamic tuning of physical and chemical properties. *Science*, 324, 59–63.
- Kloxin, A. M., Tibbitt, M. W., Kasko, A. M., Fairbaim, J. A., & Anseth, K. S. (2010). Tunable hydrogels for external manipulation of cellular microenvironments through controlled photodegradation. Adv. Mater., 22, 61–66.
- Kolff, W. J. (1979). Artificial organs in the seventies. Trans. ASAIO, 16, 534.
- Kopecek, J. (1977). Soluble biomedical polymers. *Polymer. Med.*, 7, 191.
- Ku, S. H., Ryu, K., Hong, S. K., Lee, H., & Park, C. B. (2010). General functionalization route for cell adhesion on non-wetting surfaces. *Biomaterials*, 31, 2535–2541.
- Kuhl, P. R., & Griffith-Cima, L. G. (1996). Tethered epidermal growth factor as a paradigm for growth factor-induced stimulation from the solid phase. *Nat. Med.*, 2, 1022– 1027.
- Laskin, A. I. (Ed.), (1985). Enzymes and Immobilized Cells in Biotechnology. Menlo Park, CA: Benjamin/Cummings.
- Lavin, A., Sung, C., Klibanov, A. M., & Langer, R. (1985). Enzymatic removal of bilirubin from blood: A potential treatment for neonatal jaundice. *Science*, 230, 543.
- Lee, H., Dellatore, S. M., Miller, W. M., & Messersmith, P. S. (2007). Mussel inspired surface chemistry for multifunctional coatings. *Science*, 318, 426–430.
- Lee, S. T., Yun, J. I., Jo, Y. S., Mochizuki, M., van der Vlies, A. J., et al. (2010). Engineering integrin signaling for promoting embryonic stem cell self-renewal in a precisely defined niche. *Biomaterials*, 31, 1219–1226.
- Lee, Y. S., & Mrksich, M. (2002). Protein chips: From concept to practice. *Trends Biotechnol.*, 20, S14–S18.
- Lutolf, M. P., & Hubbell, J. A. (2005). Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. *Nat. Biotechnol.*, 23, 47–55.
- Lutolf, M. R., Weber, F. E., Schmoekel, H. G., Schense, J. C., Kohler, T., et al. (2003a). Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. *Nat. Biotechnol.*, 21, 513–518.
- Lutolf, M. P., Raeber, G. P., Zisch, A. H., Tirelli, N., & Hubbell, J. A. (2003b). Cell-responsive synthetic hydrogels. *Adv. Mater.*, 15, 888–892.
- McClung, W. G., Clapper, D. L., Hu, S. P., & Brash, J. L. (2001). Lysine-derivatized polyurethane as a clot lysing surface: Conversion of plasminogen to plasmin and clot lysis *in vitro*. *Biomaterials*, 22, 1919–1924.

- McClung, W. G., Clapper, D. L., Anderson, A. B., Babcock, D. E., & Brash, J. L. (2003). Interactions of fibrinolytic system proteins with lysine-containing surfaces. *J. Biomed. Mater. Res.*, 66A, 795–801.
- McDevitt, T. C., Angelo, J. C., Whitney, M. L., Reinecke, H., Hauschka, S. D., et al. (2002). *In vitro* generation of differentiated cardiac myofibers on micropatterned laminin surfaces. *J. Biomed. Mater. Res.*, 60, 472–479.
- Maheshwari, G., Brown, G., Lauffenburger, D. A., Wells, A., & Griffith, L. G. (2000). Cell adhesion and motility depend on nanoscale RGD clustering. *J. Cell. Sci.*, 113, 1677–1686.
- Martino, M. M., Mochizuki, M., Rothenfluh, D. A., Rempel, S. A., Hubbell, J. A., et al. (2009). Controlling integrin specificity and stem cell differentiation in 2D and 3D environments through regulation of fibronectin domain stability. *Biomaterials*, 30, 1089–1097.
- Massia, S. P., & Hubbell, J. A. (1991). An RGD spacing of 440 nm is sufficient for integrin ανβ3-mediated fibroblast spreading and 140 nm for focal contact and stress fiber formation. *J. Cell Biol.*, 114, 1089–1100.
- Mrksich, M. (2009). Using self-assembled monolayers to model the extracellular matrix. *Acta. Biomater.*, 5, 823–841.
- Nair, R., Carter, P., & Burkhard, R. (2003). NLSdb: Database of nuclear localization signals. *Nucleic. Acids. Res.*, 31, 397–399.
- Nath, N., & Chilkoti, A. (2003). Fabrication of reversible functional arrays of proteins directly from cells using a stimuli responsive polypeptide. *Anal. Chem.*, 75, 709–715.
- Neff, J. A., Tresco, P. A., & Caldwell, K. D. (1999). Surface modification for controlled studies of cell-ligand interactions. *Biomaterials*, 20, 2377–2393.
- Nose, Y., Malchesky, P. S., & Smith, J. W. (Eds.), (1983). *Plasma-pheresis: New Trends in Therapeutic Applications*. Cleveland, OH: ISAO Press.
- Nose, Y., Malchesky, P. S., & Smith, J. W. (Eds.), (1984). *Therapeutic Apheresis: A Critical Look*. Cleveland, OH: ISAO Press.
- Ostuni, E., Grzybowski, B. A., Mrksich, M., Roberts, C. S., & Whitesides, G. M. (2003). Adsorption of proteins to hydrophobic sites on mixed self-assembled monolayers. *Langmuir*, 19, 1861–1872.
- Park, T. G., & Hoffman, A. S. (Eds.). (1990). Immobilization of Arthrobacter simplex in a thermally reversible hydrogel: Effect of temperature cycling on steroid conversion. Biotech. Bioeng., 35, 152–159.
- Patterson, J., Martino, M. M., & Hubbell, J. A. (2010). Biomimetic materials in tissue engineering. *Materials Today*, 13, 14–22.
- Piskin, E., & Hoffman, A. S. (Eds.), (1986). *Polymeric Biomaterials*. Dordrecht, The Netherlands: M. Nijhoff.
- Puleo, D. A. (1997). Retention of enzymatic activity immobilized on silanized Co-Cr-Mo and Ti-6Al-4V. J. Biomed. Mater. Res., 37, 222-228.
- Ringsdorf, H. (1975). Structure and properties of pharmacologically active polymers. *J. Polymer. Sci.*, **51**, 135.
- Sakiyama-Elbert, S. E., Panitch, A., & Hubbell, J. A. (2001). Development of growth factor fusion proteins for cell-triggered drug delivery. *FASEB J*, **15**, 1300–1302.
- Schense, J. C., & Hubbell, J. A. (1999). Cross-linking exogenous bifunctional peptides into fibrin gels with factor XIIIa. *Biocon-jugate Chem.*, 10, 75–81.
- Schmer, G., Rastelli, L., Newman, M. O., Dennis, M. B., & Holcenberg, J. S. (1981). The bioartificial organ: Review and progress report. *Internat. J. Artif. Organs*, 4, 96.
- Scotchford, C. A., Ball, M., Winkelmann, M., Voros, J., Csucs, C., et al. (2003). Chemically patterned, metal-oxide-based surfaces produced by photolithographic techniques for studying protein- and cell-interactions. II: Protein adsorption and early cell interactions. *Biomaterials*, 24, 1147–1158.

- Shoemaker, S., Hoffman, A. S., & Priest, J. H. (1987). Synthesis and properties of vinyl monomer/enzyme conjugates: Conjugation of l-asparaginase with N-succinimidyl acrylate. *Appl. Biochem. Biotechnol.*, 15, 11.
- Sparks, R. E., Solemme, R. M., Meier, P. M., Litt, M. H., & Lindan, O. (1969). Removal of waste metabolites in uremia by microencapsulated reactants. *Trans. ASAIO*, 15, 353.
- Stark, G. R. (Ed.), (1971). Biochemical Aspects of Reactions on Solid Supports. New York, NY: Academic Press.
- Sung, C., Lavin, A., Klibanov, A., & Langer, R. (1986). An immobilized enzyme reactor for the detoxification of bilirubin. Biotech. Bioeng., 28, 1531.
- Tomlinson, E., & Davis, S. S. (1986). Site-Specific Drug Delivery: Cell Biology, Medical and Pharmaceutical Aspects. New York, NY: Wilev.
- VandeVondele, S., Voros, J., & Hubbell, J. A. (2003). RGD-grafted poly-l-lysine-graft-(polyethylene glycol) copolymers block non-specific protein adsorption while promoting cell adhesion. *Biotechnol. Bioeng.*, 82, 784–790.
- Verheye, S., Markou, C. P., Salame, M. Y., Wan, B., King, S. B., III, et al. (2000). Reduced thrombus formation by hyaluronic acid coating of endovascular devices. *Arterioscler. Thromb. Vasc. Biol.*, 20, 1168–1172.

CHAPTER I.2.18 BIOMIMETIC MATERIALS

Drew Elizabeth Glaser and Christopher Viney School of Engineering, University of California at Merced, Merced, CA, USA

INTRODUCTION: WHAT ARE BIOMIMETIC MATERIALS?

Biomimetic materials are designed to replicate one or more attributes of a material produced by a living organism. This attempt at a definition highlights a shared characteristic of *biomimetic materials* and *biomaterials*, since successful biomaterials serve to either: (1) restore a natural function where the original material is absent or unable to perform properly; or (2) sustain an environment that is optimally conducive to processes such as cell culture, tissue growth, biomolecular assays, and biotechnology-based manufacturing.

How Can Biomaterials Science Benefit From Biomimicry?

In both biomaterials science and the science of biomimetic materials, there is an underlying premise that the desirable characteristics of a natural material can be replicated successfully. However, biomimicry is not just about replicating the useful *properties* of a natural material (human or other animal tissue) in a surrogate product. Biomimicry also draws upon Nature's lessons in the chemistry, processing, and structure of materials. Biomimicry therefore can provide guidance for every step in the procedure by which molecules are selected and manipulated during the design and fabrication of a biomaterial. This chapter highlights biomimicry as a source of inspiration for design and modification of biomaterials and biomedical devices.

- Ward, M. D., & Hammer, D. A. (1993). A theoretical analysis for the effect of focal contact formation on cell–substrate attachment strength. *Biophys. J.*, 64, 936–959.
- Weetall, H. H. (Ed.), (1975). Immobilized Enzymes, Antigens, Antibodies and Peptides: Preparation and Characterization. New York, NY: Dekker.
- Winkelmann, M., Gold, J., Hauert, R., Kasemo, B., Spencer, N. D., et al. (2003). Chemically patterned, metal oxide based surfaces produced by photolithographic techniques for studying protein– and cell–surface interactions I: Microfabrication and surface characterization. *Biomaterials*, 24, 1133–1145.
- Yang, H. J., Cole, C. A., Monji, N., & Hoffman, A. S. (1990). Preparation of a thermally phase-separating copolymer, poly(N- isopropylacrylamide-co-N-acryloxysuccinimide) with a controlled number of active esters per polymer chain. J. Polymer Sci. A Polymer Chem., 28, 219–220.
- Zaborsky, O. (1973). *Immobilized Enzymes*. Cleveland, OH: CRC Press.
- Zisch, A. H., Schenk, U., Schense, J. C., Sakiyama-Elbert, S. E., & Hubbell, J. A. (2001). Covalently conjugated VEGF-fibrin matrices for endothelialization. J. Controlled Release, 72, 101–113.

Biomimicry recognizes that the functional materials produced by living organisms (and the natural processes by which such materials are made) have evolved over a very long period of time and that, by definition, are biocompatible. If a natural material does an excellent job (and a better job than an existing synthetic counterpart), then mimicry of that material should be considered. In this context, "excellent job" and "better job" are qualified with reference to a product having superior properties, which may include such attributes as being inexpensive or robust or environmentally friendly, or simply being unobtrusive.

It is necessary to take care about what we understand by a *natural material*. Since humans are themselves an integral part of Nature, we have to recognize that human technology and the materials that it creates can be regarded in principle as just further examples of what Nature can achieve. To avoid possible ambiguity, we will consider the term "natural material" to refer to materials that are produced *metabolically* by living organisms.

A CLASSIFICATION OF BIOMIMETIC MATERIALS

Within the context of (bio)materials, it can be helpful to recognize – and convenient to distinguish between – various classes of biomimicry, based on what type of natural attribute is being mimicked. The use of parentheses in "(bio)materials" here signifies that Nature's lessons for materials science can be widely applicable, and are not restricted specifically to biomaterials.

Functional biomimicry occurs when Nature provides the inspiration for one or more physical and/or chemical properties of a (bio)material. According to our preceding definition of a biomimetic material, there is some element of functional biomimicry in every successful biomaterial.